Atmosphere

Atmosphere

- 1. Name the layers of the atmosphere.
- 2. Identify where the energy in the atmosphere comes from
- 3. Explain how temperature, pressure and water vapor changes with altitude in the atmosphere.
- 4. Explain how the Earth got its atmosphere.
- 5. Describe how human activity affects the atmosphere.
- 6. Explain what the atmosphere does for life on Earth.
- 7. State the atmospheric composition.
- 8. Identify greenhouse gases and what they do in the atmosphere.

Weather

- 9. Differentiate between weather and climate.
- 10. Describe the water cycle.
- 11. Identify and measure the characteristics of weather: Humidity, Air Pressure, and Wind.
- 12. Identify the proper instruments used to measure weather.
- 13. Identify air masses in the United States.
- 14. Differentiate between warm, cold, stationary and occluded fronts.
- 15. Formulate a safety plan in preparation for hazardous weather.

Here's the 5 day forecast. To be honest, after tomorrow, your guess is as good as mine!

Atmosphere

What are the four layers of the atmosphere?

What happens to temperature as altitude incre	eases in the:	
Troposphere:	Stratosphere:	
Mesosphere:	Thermosphere:	
What happens to pressure as your altitude inc	reases?	
What is the boundary between the Troposphe	re and Stratosphere called?	
What is the boundary between the Stratosphe	re and the Mesosphere called?	
What is the boundary between the Mesospher	e and Thermosphere called?	
What layer of the atmosphere do you live in? _	<u>-</u>	
What happens to water vapor concentration w	when you go up in the atmosphere?	

What is the Atmosphere made of?

Table 1–2 Principal gases of dry air			What gas makes up the greatest volume of	
Constituent	Percent stituent by Volume		the atmosphere? What gas do you need most from the atmosphere?	
Nitrogen (N ₂)	78.084	780,840.0	atmosphere.	
Oxygen (O ₂)	20.946	209,460.0	What percent volume is the above gas in	
Argon (Ar)	0.934	9,340.0	the atmosphere?	
Carbon dioxide (CO_2)	0.036	360.0		
Neon (Ne)	0.00182	18.2	What does PPM stand for?	
Helium (He)	0.000524	5.24		
Methane (CH ₄)	0.00015	1.5		
Krypton (Kr)	0.000114	1.14		
Hydrogen (H ₂)	0.00005	0.5		

Where did the atmosphere come from?

- -Early atmosphere is believed to have resulted from outgassing by early volcanoes.
- -~2.4 billion years ago oxygen began accumulating → photosynthesis by cyanobacteria.

Humans and the Atmosphere

- -Human activity has negatively affected the atmosphere → Pollutants like gases, soot and ash
- -Deforestation and burning fossil fuels have increase CO₂
- Greenhouse gases like Carbon Dioxide (CO₂), Water Vapor (H₂O_(g)), and Methane (CH₄)
- -Greenhouse gases trap heat close to the Earth's Surface

Ozone Layer- Three oxygen's (03), that prevents ultraviolet (UV) radiation from reaching the surface

- -located in the stratosphere
- -human's added *Choloroflourocarbons* (CFC's) that have destroyed the ozone in certain parts
- -less ozone → more skin cancer and can hinder plant and animal growth.

Atmospheric Conditions

Weather- day to day conditions of the atmosphere (short term) **Climate**- the long term conditions (30 years) → more predictable

Sun cause the Earth to heat up unevenly, the Earth's atmosphere is a fluid that moves that heat around. We measure: temperature, pressure, humidity, wind, clouds and precipitation.

Temperature- measurement of the avg. kinetic energy of the air molecules, (caused by the sun)

- -measured with a $thermometer \rightarrow 3$ scales: Fahrenheit, Celsius, Kelvin
- -changes based on time, latitude and elevation

- 2. Convert 55*C to Fahrenheit: _____
- 3. Convert 100*C to Kelvin: _____
- 4. Water freezes at: _____K
- 5. 260K = ____***F** & ____*C

Humidity- water vapor in the air

- solid: snow/ice liquid: rain gas: water vapor
- -measured with a psychrometer

Air Pressure- weight of the air pushing down

- as altitude increase air pressure decrease
- measured with barometer
 - high pressure → cool, dry, calm day

Explain Bernoulli's Principle in regards to the Can Activity:

Wind-horizontal movement of air due to pressure differences.

- -move from high to low
- -named for the direction from which they originated
- -speed measured with anemometer
- -Wind curves to the right in the Northern Hemisphere due to the *Coriolis Effect* (Earth's rotation)

Planetary Winds

- 1. What is the wind direction here in Monroe? _____
- 2. What type of weather is at 30 N?
- 3. Is the air rising or sinking at 60S?
- 4. What is the wind direction at 22N?
- 5. Why is the air at the north pole dry?

Hydrological Cycle (Water Cycle)

Explain in your own words the diagram above:

Explain in your own words the "Cloud In A Bottle" demonstration:

Air Masses- Large body of air with the same temperature and moisture throughout

- takes on characteristics from its source region (where the air came from)
- air forming over water will be moist (low pressure), over land dry (high pressure)
- air forming in polar regions \rightarrow cold, tropical regions \rightarrow warm

Air Mass Type	Map Symbol	Source Region	Characteristics

Air Masses of North America

Fronts- boundaries (interfaces) between different air masses

- -Cold fronts- cold air moves into warm air→ Faster
- -Warm fronts- warm air moves into cold air → Slower

-Stationary front- two air masses sitting side by side

- -Precipitation occurs at front because cold air pushes warm air up which causes it it to cool, making the water vapor in the air condense into clouds \rightarrow precipitation
- Fronts mean a change in weather

